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It is well known that the Abelian Z2 anyonic model �toric code� can be realized on a highly entangled
two-dimensional spin lattice, where the anyons are quasiparticles located at the end points of stringlike con-
catenations of Pauli operators. Here we show that the same entangled states of the same lattice are capable of
supporting the non-Abelian Ising model, where the concatenated operators are elements of the Clifford group.
The Ising anyons are shown to be essentially superpositions of the Abelian toric code anyons, reproducing the
required fusion, braiding, and statistical properties. We propose a string framing and ancillary qubits to imple-
ment the nontrivial chirality of this model.
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Anyons are two-dimensional particles that, unlike boson
or fermions, satisfy exotic statistics.1–5 These are manifested
for Abelian anyons by a phase factor when they are inter-
changed or for non-Abelian anyons by a unitary matrix.6

This complex behavior makes it a challenging task to find a
representation, mathematical or physical, that reproduces
these properties. Recently, there has been increased interest
in these models due to their connection to fault-tolerant
quantum computation7,8 and their relation to new states of
topologically ordered matter.9 They are also of interest in the
study of multipartite entanglement due to the so-called topo-
logical entanglement10 required to realize anyons on physical
systems. Several proposals have been made11–14 for physical
systems with anyonic behavior. Of particular interest are lat-
tice models, where qubits are placed on a two-dimensional
surface with their states representing the vacuum or anyonic
populations.7,15–18 While for the quantum double models we
have a simple spin representation of the corresponding
states,7,16,19,20 it has been rather hard to identify the states of
other models such as the so-called Ising anyonic model.

Recently, Kitaev15 presented a spin-lattice Hamiltonian
that for different coupling regimes exhibits Abelian or non-
Abelian anyonic behavior.21,22 The former corresponds to the
well-studied toric code model, while the latter corresponds to
the Ising anyonic model, whose properties have proven dif-
ficult to demonstrate. It has been shown in the context of the
fractional quantum Hall effect that states of the Ising non-
Abelian anyons can be built up from states with Abelian
statistics.23,24 In this Rapid Communication we demonstrate
that the topologically entangled states of a spin lattice ca-
pable of supporting the anyons of the toric code are sufficient
also to support the anyons of the Ising model. This is done
by reproducing the states of the Ising model through quan-
tum superpositions of the toric code states. Our aim is to
present the mechanism that is responsible for their exotic
properties without invoking the Hamiltonian description. In
this scheme the Ising-model anyons are located at the end
points of strings of operators that belong in the Clifford
group. Thus, we give a lattice representation of a non-
Abelian model that is not a quantum double. We achieve this
by demonstrating that complex topological models can be
constructed from simpler models, providing a general meth-
odology to perform other such mappings.

To define an anyonic model one needs to give a set of
possible particle types and their fusion rules. For Abelian
models these rules take the form a�b=c, with only one
outcome possible for each fusion. For non-Abelian models,
however, the rules take the more general form a�b
=�cNab

c c, with multiple possible fusion outcomes. These
rules also determine the quantum dimension da of each par-
ticle a, with the total quantum dimension of the model de-
fined by D2=�ada

2. Further, one needs the R and F matrices
that describe the action of a counterclockwise exchange of
particles and changing the fusion order, respectively �see
Figs. 1�a� and 1�b��. These must satisfy the so-called penta-
gon and hexagon relations, which restrict to a finite set of
consistent theories.25 These concepts can be summarized us-
ing the topological S matrix

Sab =
1

D
�

c

dc tr�Rc
abRc

ba� ,

which can be interpreted as the vacuum-to-vacuum process
depicted in Fig. 1�c�.

Toric code and Ising models. The toric code model con-
sists of four different particle types: the vacuum 1, the

FIG. 1. �a� F matrices, �b� braidings R, and �c� S matrix of a
general anyonic model. The vertical axis represents time running
downward.
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anyons e and m, and the fermion �. The nontrivial fusion
rules for these particles are

e � e = m � m = � � � = 1, e � m = �, e � � = m ,

m � � = e .

The quantum dimensions are da=1 for all a; hence, D2=4.
The R matrices of interest to us are given by

R1
�� = �R�

em�2 = − 1, R1
ee = R1

mm = 1,

and all of the F matrices are equal to the identity.
It is possible to represent these anyons on a honeycomb

lattice with qubits placed on the vertices. Each plaquette P is
split into two subplaquettes, labeled s to the left and p to the
right, in order to facilitate the implementation of the two
different species of anyons. We identify with the vacuum a
state satisfying As���= ��� and Bp���= ��� for all s and p, where
As=�1

x�2
x�3

x�4
x and Bp=�1

z�2
z�3

z�4
z are products of Pauli ma-

trices acting on the four qubits of each subplaquette. States
having any other pattern of eigenvalues can then be identi-
fied with anyonic populations. For example, an e anyon pair
is given by the state �e ,e�=�i

z���, corresponding to a −1 ei-
genvalue of the As on the s subplaquettes neighboring site i.
A string of �z’s corresponds to two e anyons positioned at its
end points. Similarly the end points of �x and i�y strings are
m and � anyons, respectively. All the properties of these
anyons can easily be reproduced from the representation of
their corresponding strings by the Pauli operators.26

On the other hand, the Ising model consists of three dif-
ferent particle types: the vacuum 1, the non-Abelian anyon
�, and a fermion �. The nontrivial fusion rules are

� � � = 1 + �, � � � = 1, � � � = � .

Again all particles are their own antiparticles. The quantum
dimensions are given by d1=d�=1 and d�=�2, which also
lead to D2=4. The R matrices of interest to us are

R1
�� = − 1, �R�

���2 = − 1,

�R1
���2 = e−i�/4, �R�

���2 = − e−i�/4.

This model has the nontrivial F matrix

F���
� =

1
�2

	1 1

1 − 1

 �1�

in the basis 1 ,�. This shows that a change in the fusion order
of � particles leads to a superposition of different fusion
outcomes.

Superposition principle. There is a simple argument that
shows a relation between the toric code and the Ising models.
Consider their corresponding S matrices given by

SZ2
=

1

2�
1 1 1 1

1 1 − 1 − 1

1 − 1 1 − 1

1 − 1 − 1 1
� ,

SIsing =
1

2� 1 �2 1

�2 0 − �2

1 − �2 1
�

defined in the bases 1 ,e ,m ,� and 1,� ,�, respectively. Let us
consider the equal superpositions of the e and m particle
loops of the toric code. Then the following relations hold:

SIsing
11 = SZ2

11 = 1, SIsing
�� = SZ2

�� = 1,

SIsing
1� =

SZ2

1e + SZ2

1m

�2
= �2,

SIsing
�� =

SZ2

�e + SZ2

�m

�2
= − �2,

SIsing
�� =

SZ2

ee + SZ2

em + SZ2

me + SZ2

mm

2
= 0. �2�

Further, note that d�
2 =de

2+dm
2 and that the total quantum di-

mensions of the two models are equal.27

These observations motivate us to identify a � particle
loop of the Ising anyon model with these superposed e and m
loops and to identify the fermions of the two models. Using
this superposition principle we can demonstrate fusion,
braiding, and statistical characteristics of the Ising anyon
model. In addition, we employ an ancillary system that pro-
vides the correct chirality and will at times require its state to
be an entangled state with the lattice.

The state of a superposition of an e string and an m string,
which end in the same plaquettes, may be written as

��1,�2; j� =
1
�2

��e1,e2� + j�m1,m2�� , �3�

where, for example, we have used �e1 ,e2� to denote the state
of an e string with one end point a plaquette labeled P=1
and the other in P=2 �Fig. 2�. This can be viewed as a new
string whose end points can reproduce the behavior of the �
anyons, and so have been labeled as such. The relative sign j
is a nonlocal property of the string, which cannot be deter-
mined by local observations of the end points. It can be
changed by braiding operations, which may act locally
around end points, and so is not topologically protected. The
fermions of the toric code will reproduce the behavior of
those of the Ising model, so we will identify � strings with �
strings.

FIG. 2. The state of a � string with end points in two plaquettes
of the honeycomb lattice can be described by a superposition of e
and m strings. The relative � sign is a nonlocal property that cannot
be accessed by measurements at either end point.

WOOTTON et al. PHYSICAL REVIEW B 78, 161102�R� �2008�

RAPID COMMUNICATIONS

161102-2



The movement of � must be performed in such a way that
it does not affect the superposition that encodes the non-
Abelian character of the anyons.28 This can be done by using
a qubit ancilla, initially in state �0�q, and the controlled op-
erations

Cs =
1

2
�1 + As� � 1q +

1

2
�1 − As� � �q

x ,

Di = �i
x

� �0�
0�q + �i
z

� �1�
1�q. �4�

Applying Cs entangles the s plaquette at the end point of a �
string with the ancilla. The operation Di may then be applied
between the ancilla and the lattice qubit i to extend the string
one step. To unentangle the ancilla, Cs� is applied using the
plaquette s� at the new end point of the � string. This method
of extending the strings is local, allowing the interpretation
of their end points as particles. Also, these operators repro-
duce the braiding statistics of the toric code.

Because we represent particles as end points of strings,
we do not consider any process that cannot be described
purely in terms of them. So we restrict ourselves to only
considering the fusion processes in the Ising model that can
be thought of as two strings fusing to form another. This
process will be referred to as the fusion of strings. We further
restrict that the composite string belongs to the vacuum sec-
tor. As an example, the state of two � strings can be written
as

���1,�2; j���3,�4;k�� =
1

2
��e1,e2,e3,e4� + jk�m1,m2,m3,m4�

+ k�e1,e2,m3,m4� + j�m1,m2,e3,e4�� ,

�5�

where the relative signs are given by j ,k� �−1, +1�. The
fusion of the strings is achieved by the fusion of the particles
residing at plaquettes 1 and 3 and of those at 2 and 4.29 The
end points in the first two terms will each behave as the
vacuum since each composite object is made up of either two
e’s or two m’s and similarly the second two terms will each
give a fermion string. If j=k the result of the fusion is then

���1,�2; j���3,�4; j�� =
1
�2

��11,3,12,4� + j��1,3�2,4�� , �6�

where we have used �11,3 ,12,4�= ��e1 ,e2 ,e3 ,e4�
+ �m1 ,m2 ,m3 ,m4�� /�2 to denote the terms that fuse to
vacuum and ��1,3�2,4�= ��e1 ,e2 ,m3 ,m4�+ �m1 ,m2 ,e3 ,e4�� /�2
to denote the terms that fuse to a fermion string.

Let us identify �� ,� ;�� with pairs belonging to the
vacuum and fermion sectors, respectively. The above result
then reproduces the F matrix �1� and therefore the fusion
properties of the Ising anyon model. The fusion of a � string
belonging to the vacuum sector with one belonging to the
fermion sector does not result in a composite string, and so
we need not consider cases where j�k.

By considering the decompositions of the � and � par-
ticles in terms of the toric code particles, we can show that

they satisfy the Ising model braiding rules. For example, let
us consider the exchange of two �’s. Since these are identi-
fied with the �’s of the toric code, they will have the same
fermionic behavior. Also, since the braiding of an e or an m
around an � results in a phase factor of −1, so does the
braiding of a � around a �. Let us also consider the braiding
of two of the � particles such as those in Eq. �5�. Braiding
the � residing at plaquette 1 around that at 3 results in a
change in the relative sign for both � strings, and so a change
also in the relative sign between the vacuum and fermion
strings in the fusion outcome. From this we infer the R ma-
trices �R1

���2=1 and �R�
���2=−1. These are similar to those of

the Ising model except that a complex phase factor is miss-
ing. This required phase differs for counterclockwise and
clockwise braidings, e−i�/4 for the former and ei�/4 for the
latter. Since R=R† for the toric code particles, the lattice
does not distinguish between counterclockwise and clock-
wise evolutions. A framing16 is therefore proposed for the �
particles to make this distinction and to encode the chirality
on an ancillary system.

We allocate two framings to each � particle: one to the
left �l� and one to the right �r�. Each of them has an ancillary
qubit initially in the zero state, �0�l�0�r. When the particle
moves, the framings move with it performing the operation

Ei = 1i � � + �
+ � + i�i
y

� �− �
− � �7�

between their ancillary qubits and the lattice sites i to the left
and right of the particle. This creates superpositions of the
vacuum and a fermion on the lattice controlled on the ancilla
state. When the loops are complete the framings act trivially
on the lattice but may cause a bit flip on the ancilla depend-
ing on whether the fermion loop acquired a −1 by crossing a
� string. After each loop the ancillary qubits are measured
and the operations ei�/8�r

x and e−i�/8�l
x are applied for the

results �0�l�1�r and �1�l�0�r, respectively. These assign a phase
and reset the qubits. The state �0�l�1�r, for example, is as-
signed ei�/8 since it is the result of either a counterclockwise
loop that encloses no other � particle or a clockwise loop
which does enclose a � particle. In the former case this phase
comes from the fact that the loop causes the extended object
of the � particle and framing to undergo a counterclockwise
twist of 2�. This must therefore be assigned the phase ei�/8

due to a topological spin. In the latter case the phase comes
from both a clockwise braiding and a twist, ei�/4e−i�/8=ei�/8.
The consistency of this framing can be verified in Fig. 3,
where a complete set of elementary cases have been consid-
ered.

The phase factor required for the R matrix is that for a
braiding in which a � particle performs a loop around an-
other particle without twisting. So the twists must be re-
moved from the above loops in order to obtain the corre-
sponding evolutions. This can be done by following all loops
with a twist alone in the opposite direction. By this two-stage
process the framing applies the required phase of e−i�/4 for a
counterclockwise braiding. When the phase is inserted it
gives the R matrix required for the consistency of the Ising
model.
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We may define the plaquette operator WP=AsBp on the
plaquettes of the honeycomb lattice, where s and p are the
subplaquettes of P. This detects whether an e or an m is

present on P without distinguishing between the two. It can
therefore detect the presence of a � particle as defined above
without collapsing or otherwise changing the superposition.
The WP’s defined in this way are equivalent to those of Ki-
taev’s honeycomb lattice model.15 This means that e and m
particles and their superpositions correspond to the vortex-
like excitations of this model, as one would expect for the
Ising �’s. Similarly the fermions, which are not detected by
WP, correspond to nonvortexlike excitations.

In this Rapid Communication we demonstrated that the
superposition of the states of the toric code, together with the
appropriate framing, can reproduce the fusion, braiding, and
statistical properties of the Ising model. This is a surprising
connection between an Abelian and a non-Abelian anyonic
model that reveals the nonlocal character of the latter. It also
gives the lattice representation of a non-Abelian model
that is not a quantum double. It is an exciting possibility
to verify if such a relation holds between other models to
derive a Hamiltonian that has these states at its low-energy
spectrum or to implement these non-Abelian states in the
laboratory.30,31
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FIG. 3. �Color online� The four possible loops for a � particle
that start and finish at the marked points, where the framing is
depicted. The loops to the top are clockwise and those to the bottom
are counterclockwise. The loops to the left enclose no other � par-
ticle, while those to the right do. In �a� and �d� the left framing
crosses a � string once and the right framing does not cross or
crosses twice, resulting in a bit flip on the ancillary qubit for the left
framing only. In �b� and �c� the situation is reversed.
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